3 and 4 .Determinants and Matrices
hard

Let $\alpha, \beta, \gamma$ be the real roots of the equation, $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ and $a , b \neq 0)$ If the system of equations (in, $u,v,w$) given by $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ has non-trivial solution, then the value of $\frac{a^{2}}{b}$ is

A

$5$

B

$3$

C

$1$

D

$0$

(JEE MAIN-2021)

Solution

$\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=0$

$\Rightarrow-(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\sum \alpha \beta\right)=0$

$\Rightarrow-(-a)\left(a^{2}-2 b-b\right)=0$

$\Rightarrow a\left(a^{2}-3 b\right)=0$

$\Rightarrow a^{2}=3 b \Rightarrow \frac{a^{2}}{b}=3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.