If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is

  • [JEE MAIN 2020]
  • A

    $50 \frac{1}{4}$

  • B

    $100 \frac{1}{2}$

  • C

    $50$

  • D

    $100$

Similar Questions

The sum of the numbers between $100$ and $1000$, which is divisible by $9$ will be

Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]

Let the sum of the first three terms of an $A. P,$ be $39$ and the sum of its last four terms be $178.$ If the first term of this $A.P.$ is $10,$ then the median of the $A.P.$ is

  • [JEE MAIN 2015]

If three numbers be in $G.P.$, then their logarithms will be in

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to