જો ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ ના વિસ્તરણમાં ${(r + 1)^{th}}$ ના પદમાં $a$ અને $b$ ની ઘાતાંક સમાન હોય , તો $r$ મેળવો.
$9$
$10$
$8$
$6$
જો વિસ્તરણ ${\left[ {{a^{\frac{1}{{13}}}}\,\, + \,\,\frac{a}{{\sqrt {{a^{ - 1}}} }}} \right]^n}$ નું બીજું પદ $14a^{5/2}$ હોય તો $\frac{{^n{C_3}}}{{^n{C_2}}}$ ની કિમત મેળવો
જો ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{7}}$ નો સહગુણક એ ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{-7}}$ નો સહગુણક સમાન હોય , તો $ab =$
જો $\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$ ના વિસ્તરણમાં $x$ થી સ્વતંત્ર પદ $105$ હોય, તો $\mathrm{a}^2=$...............
${\left( {{x^3} + \frac{1}{{{x^4}}}} \right)^n}$ ના વિસ્તરણમાં $x^r$ મળે કે જે
$(2 -x^2)$ અને $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$ ના ગુણાકારમાં $x^2$ નો સહગુણક મેળવો.