${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.
$^9{C_3}.\frac{1}{{{6^3}}}$
$^9{C_3}{\left( {\frac{3}{2}} \right)^3}$
$^9{C_3}$
એકપણ નહીં.
જો $\left(x+x^{\log _{2} x}\right)^{7}$ ના વિસ્તરણમાં ચોથું પદ $4480$ હોય તો $x$ ની કિમંત મેળવો. કે જ્યાં $x \in N$ આપેલ છે.
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{39}}$ નો સહગુણક મેળવો.
જો $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{ n }$ નાં વિસ્તરણમાં શરૂઆતથી પાંચમા પદનો છેવાડે પાંચમા પદ સાથેનો ગુણોત્તર $\sqrt{6}: 1$ હોય, તો શરૂઆાતથી ત્રીજુ પદ $...........$ છે.
અહી $(3+6 x)^{n}$ ના દ્રીપદી વિસ્તરણમાં $9^{\text {th }}$ મુ પદ એ $6 x$ ની વધતી ઘાતાંકમાં $x=\frac{3}{2}$ આગળ મહતમ થાય છે . અહી $n$ ની ન્યૂનતમ કિમંત $n_{0}$ છે. જો $k$ એ $x ^{6}$ અને $x ^{3}$ ના સહગુણકનો ગુણોતર હોય તો $k + n _{0}$ ની કિમંત મેળવો.
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.