- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
medium
If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is
A
$2$ or $ - \frac{3}{2}$
B
$-2$ or $\frac{3}{2}$
C
$2$ or $\frac{3}{2}$
D
-$2$ or -$\frac{3}{2}$
(IIT-2000)
Solution
(a) $2gg' + \,2ff' = c + c'\,\,i.e.,\,\,2.1.0 + 2.\,k.\,k. = 6 + k$
or $2{k^2} – k – 6 = 0$ or $(2k + 3)\,(k – 2) = 0$
$\therefore \,$$k = 2,\, – \frac{3}{2}.$
Standard 11
Mathematics