Let $r_{1}$ and $r_{2}$ be the radii of the largest and smallest circles, respectively, which pass through the point $(-4,1)$ and having their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4= 0.$ If $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$, then $a+b$ is equal to:

  • [JEE MAIN 2021]
  • A

    $3$

  • B

    $11$

  • C

    $5$

  • D

    $7$

Similar Questions

Two orthogonal circles are such that area of one is twice the area of other. If radius of smaller circle is $r$, then distance between their centers will be -

If circles ${x^2} + {y^2} + 2ax + c = 0$and ${x^2} + {y^2} + 2by + c = 0$ touch each other, then 

Locus of the points from which perpendicular tangent can be drawn to the circle ${x^2} + {y^2} = {a^2}$, is

The equation of radical axis of the circles $2{x^2} + 2{y^2} - 7x = 0$ and ${x^2} + {y^2} - 4y - 7 = 0$ is

A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to