Gujarati
10-1.Circle and System of Circles
hard

The point of contact of the given circles ${x^2} + {y^2} - 6x - 6y + 10 = 0$ and ${x^2} + {y^2} = 2$, is

A

$(0, 0)$

B

$(1, 1)$

C

$(1, -1)$

D

$(-1, -1)$

Solution

(b) ${x^2} + {y^2} – 6x – 6y + 10 = 0$….$(i)$

${x^2} + {y^2} = 2$….$(ii)$

$ \Rightarrow – 6x – 6y + 12 = 0$

or $x + y – 2 = 0$….$(iii)$

$ \Rightarrow {x^2} + {y^2} + 2xy = 4$ {from $(iii)$}

or $2xy = 2$ {from $(ii)$}

and $x – y = \sqrt {{{(x + y)}^2} – 4xy}$

$= \sqrt {4 – 4} = 0$

or $x = y$ and $x + y = 2$

$ \Rightarrow x = 1,\;y = 1$.

Trick : Required point must satisfy both the circles.

Obviously $(1, 1)$ satisfies both the equations simultaneously.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.