7.Binomial Theorem
hard

If the coefficients of $x^4, x^5$ and $x^6$ in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of $n$ is :

A

$14$

B

$21$

C

$28$

D

$7$

(JEE MAIN-2024)

Solution

$ \text { Coeff. of } x^4={ }^n C_4 $

$ \text { Coeff. of } x^5={ }^n C_5 $

$ \text { Coeff. of } x^6={ }^n C_6 $

$ { }^n C_4,{ }^n C_5,{ }^n C_6 \ldots . A P $

$ 2 . C_5={ }^n C_4+{ }^n C_6 $

$ 2=\frac{{ }^n C_4}{{ }^n C_5}+\frac{{ }^n C_6}{{ }^n C_5} \quad\left\{\frac{{ }^n C_r}{{ }^n C_r}=\frac{n-r+1}{r}\right\} $

$ 2=\frac{5}{n-4}+\frac{n-5}{6} $

$ 12(n-4)=30+n^2-9 n+20 $

$ n^2-21 n+98=0 $

$ (n-14)(n-7)=0 $

$ n_{\max }=14 \quad n_{\min }=7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.