જો $(1+x)^n$ નાં વિસ્તરણામાં $x^4, x^5$ અને $x^6$ નાં સહગુણકો સમાંતર શ્રણીમાં હોય, તો $n$ નું મહતમ મૂલ્ય..........છે. 

  • [JEE MAIN 2024]
  • A

    $14$

  • B

    $21$

  • C

    $28$

  • D

    $7$

Similar Questions

${\left( {x - \frac{3}{{{x^2}}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.

${(1 + x + {x^3} + {x^4})^{10}},$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.

${(1 + x + {x^2} + {x^3})^n}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.

${(1 + x)^n}$ ની વિસ્તરણમાં $p^{th}$ અને ${(p + 1)^{th}}$ પદના સહગુણક અનુક્રમે $p$ અને $q$ હોય તો $p + q = $

$(1+a)^{n}$ ના વિસ્તરણનાં ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $1: 7 : 42$ છે. $n$ શોધો.