If the coefficients of ${p^{th}}$, ${(p + 1)^{th}}$ and ${(p + 2)^{th}}$ terms in the expansion of ${(1 + x)^n}$ are in $A.P.$, then
${n^2} - 2np + 4{p^2} = 0$
${n^2} - n\,(4p + 1) + 4{p^2} - 2 = 0$
${n^2} - n\,(4p + 1) + 4{p^2} = 0$
None of these
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to
The coefficient of $x^5$ in the expansion of $\left(2 x^3-\frac{1}{3 x^2}\right)^5$ is
The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$. Then $n=$
If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is