Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem
Using Binomial Theorem, the given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expanded as
$\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$
$ = {\,^3}{C_0}{\left( {3{x^2} - 2ax} \right)^3} + {\,^3}{C_1}{\left( {3{x^2} - 2ax} \right)^2}\left( {3{a^2}} \right) + {\,^3}{C_2}\left( {3{x^2} - 2ax} \right){\left( {3{a^2}} \right)^2} + {\,^3}{C_3}{\left( {3{a^2}} \right)^3}$
$=\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6}$
$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$ ...........$(1)$
Again by using Binomial Theorem, we obtain
$\left(3 x^{2}-2 a x\right)^{3}$
$ = {\,^3}{C_0}{\left( {3{x^2}} \right)^3} - {\,^3}{C_1}{\left( {3{x^2}} \right)^2}(2ax) + {\,^3}{C_2}\left( {3{x^2}} \right){(2ax)^2} - {\,^3}{C_3}{(2ax)^3}$
$=27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$
$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$ ............$(2)$
From $(1)$ and $(2),$ we obtain
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
The middle term in the expansion of ${(1 + x)^{2n}}$ is
Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is
The coefficient of $x^4$ in ${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ is :
The coefficient of middle term in the expansion of ${(1 + x)^{10}}$ is