Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Using Binomial Theorem, the given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expanded as

$\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$

$ = {\,^3}{C_0}{\left( {3{x^2} - 2ax} \right)^3} + {\,^3}{C_1}{\left( {3{x^2} - 2ax} \right)^2}\left( {3{a^2}} \right) + {\,^3}{C_2}\left( {3{x^2} - 2ax} \right){\left( {3{a^2}} \right)^2} + {\,^3}{C_3}{\left( {3{a^2}} \right)^3}$

$=\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6}$

$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$=\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$            ...........$(1)$

Again by using Binomial Theorem, we obtain

$\left(3 x^{2}-2 a x\right)^{3}$

$ = {\,^3}{C_0}{\left( {3{x^2}} \right)^3} - {\,^3}{C_1}{\left( {3{x^2}} \right)^2}(2ax) + {\,^3}{C_2}\left( {3{x^2}} \right){(2ax)^2} - {\,^3}{C_3}{(2ax)^3}$

$=27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$

$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$           ............$(2)$

From $(1)$ and $(2),$ we obtain

$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$

$=27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

Similar Questions

The sum of all those terms which are rational numbers in the expansion of $\left(2^{1 / 3}+3^{1 / 4}\right)^{12}$ is:

  • [JEE MAIN 2021]

The second, third and fourth terms in the binomial expansion $(x+a)^n$ are $240,720$ and $1080,$ respectively. Find $x, a$ and $n$

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$

In ${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ if the ratio of ${7^{th}}$ term from the beginning to the ${7^{th}}$ term from the end is $\frac{1}{6}$, then $n = $

Let $[t]$ denotes the greatest integer $\leq t$. If the constant term in the expansion of $\left(3 x^2-\frac{1}{2 x^5}\right)^7$ is $\alpha$, then $[\alpha]$ is equal to $............$.

  • [JEE MAIN 2023]