7.Binomial Theorem
medium

જો ${(1 + x)^n}$ ના વિસ્તરણમાં ${p^{th}}$, ${(p + 1)^{th}}$ અને ${(p + 2)^{th}}$ પદો સમાંતર શ્રેણીમાં હોય તો . . . .

A

${n^2} - 2np + 4{p^2} = 0$

B

${n^2} - n\,(4p + 1) + 4{p^2} - 2 = 0$

C

${n^2} - n\,(4p + 1) + 4{p^2} = 0$

D

એકપણ નહીં.

(AIEEE-2005)

Solution

(b) Coefficient of ${p^{th}},{(p + 1)^{th}}$

and ${(p + 2)^{th}}$ terms in expansion of ${(1 + x)^n}$ are $^n{C_{p – 1}}{,^n}{C_p}{,^n}{C_{p + 1}}$.

Then ${2^n}{C_p} = {\,^n}{C_{p – 1}} + {\,^n}{C_{p + 1}}$

$ \Rightarrow {n^2} – n(4p + 1) + 4{p^2} – 2 = 0$

$Trick :$ Let $p = 1$, hence $^n{C_0},{\,^n}{C_1}$and $^n{C_2}$are in $ A.P.$

$ \Rightarrow \,\,\,{2.^n}{C_1} = {\,^n}{C_0}{ + ^n}{C_2}\,\,\,\,$

$\Rightarrow 2n = 1 + \frac{{n\,(n – 1)}}{2}$$ \Rightarrow \,\,4n = 2 + {n^2} – n\,\,\,\,$

$\Rightarrow {n^2} – 5n + 2 = 0$ which is given by $(b).$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.