જો ${(1 + x)^n}$ ના વિસ્તરણમાં ${5^{th}}$, ${6^{th}}$ અને ${7^{th}}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો $n =$ . . .
માત્ર $7 $
માત્ર $ 14$
$7$ અથવા $14$
એકપણ નહીં.
જો ${\left( {\frac{2}{x} + {x^{{{\log }_e}x}}} \right)^6}(x > 0)$ ના વિસ્તરણમાં ચોથું પદ $20\times 8^7$ હોય તો $x$ ની કિમત મેળવો.
જો ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ ના વિસ્તરણમાં ${x^m}$ નો સહગુણક મેળવો.
$\left(\frac{\mathrm{x}}{\cos \theta}+\frac{1}{\mathrm{x} \sin \theta}\right)^{16}$ ના વિસ્તરણમાં જો $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ હોય ત્યારે $\ell_{1}$ એ $x$ થી સ્વતંત્ર ન્યૂનતમ પદ છે અને જ્યારે $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8} $ હોય ત્યારે $\ell_{2}$ એ $x$ થી સ્વતંત્ર ન્યૂનતમ પદ છે તો $\ell_{2}: \ell_{1}$ ગુણોતર મેળવો.
$(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ ના વિસ્તરણમાં $x^{10}$ નો સહગુણક મેળવો.
જો ${(1 + x)^{21}}$ ના વિસ્તરણમાં ${x^r}$ અને ${x^{r + 1}}$ ના સહગુણક સમાન હોય તો $ r$ મેળવો.