7.Binomial Theorem
medium

જો ${(1 + x)^n}$ ના વિસ્તરણમાં ${5^{th}}$, ${6^{th}}$ અને ${7^{th}}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો $n =$ . . .

A

માત્ર $7 $

B

માત્ર $ 14$

C

$7$ અથવા $14$

D

એકપણ નહીં.

Solution

(c) Coefficient of ${T_5} = {\,^n}{C_4},{T_6} = {\,^n}{C_5}$and ${T_7} = {\,^n}{C_6}$

According to the condition, $2\,{\,^n}{C_5} = {\,^n}{C_4} + {\,^n}{C_6}$

$ \Rightarrow \,\,2\left[ {\frac{{n!}}{{(n – 5)!5!}}} \right] = \left[ {\frac{{n!}}{{(n – 4)\,!\,4\,!}} + \frac{{n!}}{{(n – 6)\,!\,6\,!}}} \right]$

$ \Rightarrow \,\,2\left[ {\frac{1}{{(n – 5)\,5}}} \right] = \left[ {\frac{1}{{(n – 4)(n – 5)}} + \frac{1}{{6 \times 5}}} \right]$

After solving, we get $n=7$ or $14$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.