यदि ${\left( {2 + \frac{x}{3}} \right)^n}$ में ${x^7}$ तथा ${x^8}$ के गुणांक बराबर हैं, तब $n$ है
$56$
$55$
$45$
$15$
माना $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x > 0$ के प्रसार में $x ^{-1}$ तथा $x ^{-3}$ के गुणांक क्रमश: $m$ तथा $n$ है। यदि धनात्मक पूर्णांक $r$ इस प्रकार है कि $m n^2={ }^{15} C _{ r } .2^{ r }$ है, तो $r$ का मान है।
यदि सभी $x \in R$ के लिए $1+x^{4}+x^{5}=\sum_{ i =0}^{5} a _{ i }(1+x)^{ i }$ है, तो $a _{2}$ है
$(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
एक घन पूर्णाक $n$ के लिए, $\left(1+\frac{1}{ x }\right)^{ n}$ को $x$ की बढ़ती घातों में प्रसारित किया गया है। यदि इस प्रसार में तीन क्रमागत गुणांकों का अनुपात, $2: 5: 12$ है, तो $n$ बराबर है -
${(x + a)^n}$ के द्विपद विस्तार में पदों ${x^{n - r}}{a^r}$ तथा ${x^r}{a^{n - r}}$ के गुणांको का अनुपात होगा