यदि $(2+a)^{50}$ के द्विपद प्रसार का सत्रहवाँ और अट्ठारहवाँ पद समान हो तो $a$ का मान ज्ञात कीजिए।
The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$
For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$
Therefore, ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$
$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$
Simlarly, ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$
Given that $T_{17}=T_{18}$
So ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$
Therefore $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$
i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$
यदि $\left( x +\sqrt{ x ^{2}-1}\right)^{6}+\left( x -\sqrt{ x ^{2}-1}\right)^{6}$ के प्रसार में $x ^{4}$ तथा $x ^{2}$ के गुणांक क्रमशः $\alpha$ तथा $\beta$ हैं, तो
${\left( {\frac{1}{2}{x^{1/3}} + {x^{ - 1/5}}} \right)^8}$ के विस्तार में $x$ से स्वतंत्र पद होगा
यदि $\left(\mathrm{ax}^3+\frac{1}{\mathrm{bx}^{\frac{1}{3}}}\right)^{15}$ के प्रसार में $\mathrm{x}^{15}$ का गुणांक $\left(\mathrm{ax}^{\frac{1}{3}}-\frac{1}{\mathrm{bx}^3}\right)^{15}$ के प्रसार, में $\mathrm{x}^{-15}$ के गुणांक के बराबर है, जहाँ $a$ तथा $b$ धनात्मक संख्याएँ है, तो ऐसे प्रत्येक क्रमित युग्म $(\mathrm{a}, \mathrm{b})$ के लिए :
$\left(\frac{1- t ^{6}}{1- t }\right)^{3}$ के प्रसार में $t ^{4}$ का गुणांक है
${(1 + \alpha x)^4}$ व ${(1 - \alpha x)^6}$ के प्रसार में मध्य पद के गुणांक समान होंगे यदि $\alpha $ का मान है