यदि $(2+a)^{50}$ के द्विपद प्रसार का सत्रहवाँ और अट्ठारहवाँ पद समान हो तो $a$ का मान ज्ञात कीजिए।
The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$
For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$
Therefore, ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$
$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$
Simlarly, ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$
Given that $T_{17}=T_{18}$
So ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$
Therefore $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$
i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$
माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
$\left(1-x+2 x^3\right)^{10}$ में $\mathrm{x}^7$ का गुणांक है_________
यदि ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ के विस्तार में $x $ का गुणांक $270$ हो, तो $k =$
$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है
माना $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x > 0$ के प्रसार में $x ^{-1}$ तथा $x ^{-3}$ के गुणांक क्रमश: $m$ तथा $n$ है। यदि धनात्मक पूर्णांक $r$ इस प्रकार है कि $m n^2={ }^{15} C _{ r } .2^{ r }$ है, तो $r$ का मान है।