If the determinant $\left| {\begin{array}{*{20}{c}}{a\, + \,p}&{1\, + \,x}&{u\, + \,f}\\ {b\, + \,q}&{m\, + \,y}&{v\, + \,g}\\{c\, + \,r}&{n\, + \,z}&{w\, + \,h}\end{array}} \right|$ splits into exactly $K$ determinants of order $3$, each element of which contains only one term, then the value of $K$, is
$6$
$8$
$9$
$12$
If $A$, $B$ and $C$ are the angles of a triangle then the value of the determinant
$\left| {\begin{array}{*{20}{c}}
{ - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\
{\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\
{ - 1 + \cos B}&{ - 1 + \cos A}&{ - 1}
\end{array}} \right|$
If $x$ is a positive integer, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{x!}&{(x + 1)!}&{(x + 2)!}\\{(x + 1)!}&{(x + 2)!}&{(x + 3)!}\\{(x + 2)!}&{(x + 3)!}&{(x + 4)!}\end{array}\,} \right|$ is equal to
If $A =$ $\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]$ (where $bc \ne 0$) satisfies the equations $x^2 + k = 0$, then
Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
2&b&c \\
4&{{b^2}}&{{c^2}}
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval
If $a, b $ and $ c$ are non zero numbers, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right|$ is equal to