- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the distance between the foci of an ellipse is $6$ and the distance between its directrices is $12$, then the length of its latus rectum is
A
$\sqrt 3$
B
$2\sqrt 3$
C
$3\sqrt 2$
D
$\frac{3}{\sqrt 2}$
(JEE MAIN-2020)
Solution
Given $2 \mathrm{ae}=6 \Rightarrow \quad \mathrm{ae}=3\dots(1)$
and $\frac{2 a}{e}=12 \Rightarrow \mathbb{a}=6 e\dots(2)$
from $( 1)$ and $( 2)$
$6 e^{2}=3 \Rightarrow \quad e=\frac{1}{\sqrt{2}}$
$\Rightarrow \quad a=3 \sqrt{2}$
Now, $b^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow \mathrm{b}^{2}=18\left(1-\frac{1}{2}\right)=9$
Length of L.R $=\frac{2(9)}{3 \sqrt{2}}=3 \sqrt{2}$
Standard 11
Mathematics