Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?

($A$) The area of the quadrilateral $A_1 A _2  A _3 A _4$ is $35$ square units

($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units

($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$

($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$

  • [IIT 2023]
  • [AIIMS 2017]
  • A

    $A,C$

  • B

    $A,D$

  • C

    $B,C$

  • D

    $B,D$

Similar Questions

The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is

If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to

  • [JEE MAIN 2019]

Let $P$ be a variable point on the ellipse $x^2 + 3y^2 = 3$ , then the maximum perpendicular distance of $P$ from the line $x -y = 10$ is

In a triangle $A B C$ with fixed base $B C$, the vertex $A$ moves such that $\cos B+\cos C=4 \sin ^2 \frac{A}{2} .$ If $a, b$ and $c$ denote the lengths of the sides of the triangle opposite to the angles $A, B$ and $C$, respectively, then

$(A)$ $b+c=4 a$

$(B)$ $b+c=2 a$

$(C)$ locus of point $A$ is an ellipse

$(D)$ locus of point $A$ is a pair of straight lines

  • [IIT 2009]

A chord $PQ$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ subtends right angle at its  centre. The locus of the point of intersection of tangents drawn at $P$ and $Q$ is-