Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?

($A$) The area of the quadrilateral $A_1 A _2  A _3 A _4$ is $35$ square units

($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units

($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$

($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$

A

$A,C$

B

$A,D$

C

$B,C$

D

$B,D$

(IIT-2023) (AIIMS-2017)

Solution

$y=m x+\frac{3}{m}$

$C^2=a^2 m^2+b^2$

$\frac{9}{m^2}=6 m^2+3 \quad \Rightarrow m^2=1$

$\mathrm{T}_1 \& \mathrm{~T}_2$

$y=x+3, y=-x-3$

Cuts $\mathrm{x}$-axis at $(-3,0)$

$\mathrm{A}_1(3,6)  \mathrm{A}_4(3,-6)$

$\mathrm{A}_2(-2,1)  \mathrm{A}_3(-2,-1)$

$\mathrm{A}_1 \mathrm{~A}_4=12, \quad \mathrm{~A}_2 \mathrm{~A}_3=2, \quad \mathrm{MN}=5$

$\text { Area }=\frac{1}{2}(12+2) \times 5=35 \text { sq.unit }$

Ans. $(A, C)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.