1.Relation and Function
hard

If the domain of the function $f(x)=\log _e$ $\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to

A

$10$

B

$12$

C

$11$

D

$9$

(JEE MAIN-2024)

Solution

$\frac{2 x+3}{4 x^2+x-3}>0 \text { and }-1 \leq \frac{2 x-1}{x+2} \leq 1 $

$\frac{2 \times+3}{(4 x-3)(x+1)}>0 \quad \frac{3 x+1}{x+2} \geq 0 \quad \& \quad \frac{x-3}{x+2} \leq 0 $

$(-\infty,-2) \cup\left[\frac{-1}{3}, \infty\right) \quad \ldots . .(1) $

$(-2,3] \quad \ldots . .(2)$

${\left[\frac{-1}{3}, 3\right] \ldots \ldots(3) \quad(1) \cap(2) \cap(3)} $

$ \left(\frac{3}{4}, 3\right] $

$ \alpha=\frac{3}{4} \beta=3 $

$ 5 \beta-4 \alpha=15-3=12$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.