The range of $f(x) = \cos (x/3)$ is
$( - 1/3,\;1/3)$
$[ - 1,\;1]$
$(1/3,\; - 1/3)$
$( - 3,\;3)$
(b) $f(x) = \cos (x/3)$
We know that $ – 1 \le \cos (x/3) \le 1$.
Let $f$ be a function satisfying $f(xy) = \frac{f(x)}{y}$ for all positive real numbers $x$ and $y.$ If $ f(30) = 20,$ then the value of $f(40)$ is-
Let $f(x) = \frac{{x\,\, – \,\,1}}{{2\,{x^2}\,\, – \,\,7x\,\, + \,\,5}}$ . Then :
The domain of the function $f(x) = {\sin ^{ – 1}}[{\log _2}(x/2)]$ is
If $f(x)$ is a quadratic expression such that $f(1) + f (2)\, = 0$ , and $-1$ is a root of $f(x)\, = 0$, then the other root of $f(x)\, = 0$ is
If $f(x + ay,\;x – ay) = axy$, then $f(x,\;y)$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.