The range of $f(x) = \cos (x/3)$ is
$( - 1/3,\;1/3)$
$[ - 1,\;1]$
$(1/3,\; - 1/3)$
$( - 3,\;3)$
(b) $f(x) = \cos (x/3)$
We know that $ – 1 \le \cos (x/3) \le 1$.
Function ${\sin ^{ – 1}}\sqrt x $ is defined in the interval
Statement $1$ : If $A$ and $B$ be two sets having $p$ and $q$ elements respectively, where $q > p$. Then the total number of functions from set $A$ to set $B$ is $q^P$. Statement $2$ : The total number of selections of $p$ different objects out of $q$ objects is ${}^q{C_p}$.
If $y = f(x) = \frac{{ax + b}}{{cx – a}}$, then $x$ is equal to
If $f(x) = \frac{x}{{x – 1}} = \frac{1}{y}$, then $f(y) = $
If $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x}^{2}+3 \mathrm{y}^{2} \leq 8\right\}$ is a relation on the set of integers $\mathrm{Z},$ then the domain of $\mathrm{R}^{-1}$ is
Confusing about what to choose? Our team will schedule a demo shortly.