The function $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$, is a periodic function with period
$2 \pi $
$\pi $
$\frac{\pi}{2}$
$\frac{\pi}{4}$
Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is
If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is
If $f$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ find the value of $n$
The range of the polynomial $P(x)=4 x^3-3 x$ as $x$ varies over the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is
The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is