Trigonometrical Equations
normal

If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-

A

$0$

B

$1$

C

$2$

D

$3$

Solution

$2 \tan x \sin x-2 \tan x+\cos ^{3} x=0$

$\frac{2 \sin ^{2} x}{\cos x}-\frac{2 \sin x}{\cos x}+\cos x=0$

$\frac{2 \sin ^{2} x-2 \sin x+\cos ^{2} x}{\cos x}=0$

$\Rightarrow \frac{\sin ^{2} x-2 \sin x+1}{\cos x}=0$

$\Rightarrow \frac{(\sin x-1)^{2}}{\cos x}=0 \Rightarrow \sin x=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.