If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-
$0$
$1$
$2$
$3$
$\alpha=\sin 36^{\circ}$ is a root of which of the following equation
The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals
The number of solutions of $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ is equal to :
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is