Trigonometrical Equations
normal

The solution set of the system of equation

$x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x   + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ where $x$ and $y$ are real in

A

a finite non-empty set

B

null set

C

$\infty $

D

none of these

Solution

$\cos x+\cos y=\frac{3}{2}$

$\Rightarrow \quad 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}=\frac{3}{2}$

$\Rightarrow \quad 2 \cos \frac{\pi}{3} \cos \frac{x-y}{2}=\frac{3}{2} \quad\left(\because x+y=\frac{2 \pi}{3}\right)$

$\Rightarrow \quad \cos \frac{x-y}{2}=\frac{3}{2}$

$\text { which is not possible } \quad\left(\because \frac{3}{2}>1\right)$

Hence the system of equations has no solution.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.