The equation $3\cos x + 4\sin x = 6$ has
Finite solution
Infinite solution
One solution
No solution
If $tan(\pi sin \theta)$ $= cot(\pi cos \theta)$, then $\left| {\cot \left( {\theta - \frac{\pi }{4}} \right)} \right|$ is -
If $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, then the value of $\sin \theta $ is
The number of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are