If the equation $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ has atleast one solution, then $(b + a)$ can be equal to

  • A

    $0$

  • B

    $\pi $

  • C

    $2\pi $

  • D

    $4\pi $

Similar Questions

The number of real solutions of the equation $x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$ is

  • [JEE MAIN 2024]

The roots of the equation ${x^4} - 2{x^3} + x = 380$ are

If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to