If $\alpha ,\beta $ and $\gamma $ are the roots of ${x^3} + px + q = 0$, then the value of ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ is equal to

  • A

    $ - 3q$

  • B

    $ - p$

  • C

    $ - pq$

  • D

    $3pq$

Similar Questions

If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$

  • [JEE MAIN 2020]

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by