4-2.Quadratic Equations and Inequations
normal

જો સમીકરણ $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ ને ઓછામાં ઓછા એક ઉકેલ મળે તો $(b + a)$ ની કિમત મેળવો 

A

$0$

B

$\pi $

C

$2\pi $

D

$4\pi $

Solution

$-\cos (a x+b)=\frac{x^{2}-2 x+5}{4}=\frac{(x-1)^{2}}{4}+1$

$\mathrm{Now},-\cos (\mathrm{ax}+\mathrm{b}) \in[-1,1]$

And $\frac{(x-1)^{2}}{4}+1 \in[1, \infty)$

$\Rightarrow-\cos (a x+b)=1$ And $\frac{(x-1)^{2}}{4}+1=1$

$\Rightarrow x=1$ And $ a x+b=(2 k+1) \pi, k \in I$

$\therefore a+b=\pi$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.