If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
$V_{n+1} = aV_n + bV_{n-1}$
$V_{n+1} = aV_n + aV_{n-1}$
$V_{n+1} = aV_n -bV_{n-1}$
$V_{n+1} = aV_{n-1} -bV_n$
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is
If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are
$\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is