વિધેય $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ નુ $x$ ની ધાતાકમાં વિસ્તરણ ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ હોય તો ${a_n}$ મેળવો.
$\frac{{{b^n} - {a^n}}}{{b - a}}$
$\;\frac{{{a^n} - {b^n}}}{{b - a}}$
$\;\frac{{{a^{n + 1}} - {b^{n + 1}}}}{{b - a}}$
$\;\frac{{{b^{n + 1}} - {a^{n + 1}}}}{{b - a}}$
જો $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ હોય તો $a _{1}+ a _{3}+ a _{5}+\ldots+ a _{37}$ ની કિમંત મેળવો.
$(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ નાં વિસ્તરણમાં $x^{256}$ નો સહગુણક મેળવો.
જો $r,k,p \in W,$ હોય તો $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ ની કિમત મેળવો
${(1 + x + {x^2})^n}$ ના સહગુણકનો સરવાળો મેળવો.
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .