જો ${ }^{20} \mathrm{C}_{\mathrm{r}}$ એ $(1+x)^{20}$ ના વિસ્તરણમાં $\mathrm{x}^{\mathrm{r}}$ નો સહગુણક દર્શાવે છે તો $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ ની કિમંત મેળવો.
$420 \times 2^{19}$
$380 \times 2^{19}$
$380 \times 2^{18}$
$420 \times 2^{18}$
જો ${(\alpha {x^2} - 2x + 1)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળોએ ${(x - \alpha y)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળો બરાબર થાય છે , તો $\alpha $=
જો $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ તો $\alpha$ ની કિમંત મેળવો.
${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.
$\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ ની કિમંત મેળવો.
$\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ ના વિસ્તરણમાં $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ ની વધતી ઘાતાંકમાં નવમું પદ જો $180$ હોય તો $^{\prime}x^{\prime}$ ની શકય કિમંત મેળવો.