${(1 + x - 3{x^2})^{2134}}$ ના સહગુણકનો સરવાળો મેળવો.
$-1$
$1$
$0$
${2^{2134}}$
જો ${(x - 2y + 3z)^n}$ ના સહગુણકોનો સરવાળો $128$ હોય તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.
ધારો કે $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3!}+\frac{{ }^3 \mathrm{C}_2}{4!}+\frac{{ }^4 \mathrm{C}_2}{5!}+\ldots$, $\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1!}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2!}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3!}+\ldots .$ તો $\frac{2 b}{a^2}=$...........
જો ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ ,${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ અને $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ તથા $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ ,હોય તો $\frac{P}{{2Q}}$ ની કિમત મેળવો
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, તો ${C_0} + {C_2} + {C_4} + {C_6} + .....$ = . . .
$(1 +x)^{101} (1 +x^2 - x)^{100}$ ના વિસ્તરણમાં પદની સંખ્યા મેળવો.