If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be

  • A

    $ - \frac{1}{2}$

  • B

    $0$

  • C

    $\frac{1}{4}$

  • D

    $\frac{1}{2}$

Similar Questions

If the set of all $a \in R$, for which the equation $2 x^2+$ $(a-5) x+15=3 a$ has no real root, is the interval $(\alpha, \beta)$, and $X=\{x \in Z: \alpha < x < \beta\}$, then $\sum_{x \in X} x^2$ is equal to

  • [JEE MAIN 2025]

If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at

  • [AIEEE 2012]

lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation

  • [JEE MAIN 2015]

Let $A=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $B=\{x \geq 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $n(A \cup B)$ is equal to:

  • [JEE MAIN 2025]

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for