If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be

  • A

    $ - \frac{1}{2}$

  • B

    $0$

  • C

    $\frac{1}{4}$

  • D

    $\frac{1}{2}$

Similar Questions

If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is

  • [KVPY 2010]

The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is

  • [KVPY 2019]

Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,

  • [KVPY 2020]