If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be
$ - \frac{1}{2}$
$0$
$\frac{1}{4}$
$\frac{1}{2}$
The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
If $a,b,c$ are distinct real numbers and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is
If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ is equal to
The sum of the cubes of all the roots of the equation $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ is
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........