- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be
A
$ - \frac{1}{2}$
B
$0$
C
$\frac{1}{4}$
D
$\frac{1}{2}$
Solution
(c) We know that $a{x^2} + bx + c \ge 0$ if $a > 0$
and ${b^2} – 4ac \le 0$.
? $mx – 1 + \frac{1}{x} = 0\,\,\, \Rightarrow \,\,\frac{{m{x^2} – x + 1}}{x} \ge 0$
==> $m{x^2} – x + 1 \ge 0$ and $x > 0$
Now $m{x^2} – x + 1 \ge 0$ if $m > 0$ and $1 – 4m \le 0$
or if $m > 0$ and $m \ge \frac{1}{4}$
Thus the minimum value of m is $\frac{1}{4}$.
Standard 11
Mathematics