If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be
$ - \frac{1}{2}$
$0$
$\frac{1}{4}$
$\frac{1}{2}$
If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is
The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is
Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,