If the first and the $n^{\text {th }}$ term of a $G.P.$ are $a$ and $b$, respectively, and if $P$ is the product of $n$ terms, prove that $P^{2}=(a b)^{n}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The first term of the $G.P.$ is $a$ and the last term is $b$

Therefore, the $G.P.$ is $a, a r, a r^{2}, a r^{3} \ldots a r^{n-1},$ where $r$ is the common ratio.

$b=a r^{n-1}$        .........$(1)$

$P=$ Product of $n$ terms

$=(a)(a r)\left(a r^{2}\right) \ldots \ldots\left(a r^{n-1}\right)$

$=(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots . r^{n-1}\right)$

$ = {a^n}{r^{1 + 2 + .....(n - 1)}}$         ........$(2)$

Here, $1,2, \ldots \ldots(n-1)$ is an $A.P.$

$\therefore 1+2+\ldots \ldots \ldots+(n-1)$

$=\frac{n-1}{2}[2+(n-1-1) \times 1]=\frac{n-1}{2}[2+n-2]=\frac{n(n-1)}{2}$

$P=a^{n} r^{\frac{n(n-1)}{2}}$

$\therefore P^{2}=a^{2 n} r^{n(n-1)}$

$=\left[a^{2} r^{(n-1)}\right]^{n}$

$=\left[a \times a r^{n-1}\right]^{n}$

$=(a b)^{n}$       [ Using $(1)$ ]

Thus, the given result is proved.

Similar Questions

If $p,\;q,\;r$ are in one geometric progression and $a,\;b,\;c$ in another geometric progression, then $cp,\;bq,\;ar$ are in

The difference between the fourth term and the first term of a Geometrical Progresssion is $52.$ If the sum of its first three terms is $26,$ then the sum of the first six terms of the progression is

  • [AIEEE 2012]

Consider an infinite $G.P. $ with first term a and common ratio $r$, its sum is $4$ and the second term is $3/4$, then

  • [IIT 2000]

If $a,\;b,\;c$ are in $G.P.$, then

$\alpha ,\;\beta $ are the roots of the equation ${x^2} - 3x + a = 0$ and $\gamma ,\;\delta $ are the roots of the equation ${x^2} - 12x + b = 0$. If $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$, then $(a,\;b) = $