If the first and the $n^{\text {th }}$ term of a $G.P.$ are $a$ and $b$, respectively, and if $P$ is the product of $n$ terms, prove that $P^{2}=(a b)^{n}$
The first term of the $G.P.$ is $a$ and the last term is $b$
Therefore, the $G.P.$ is $a, a r, a r^{2}, a r^{3} \ldots a r^{n-1},$ where $r$ is the common ratio.
$b=a r^{n-1}$ .........$(1)$
$P=$ Product of $n$ terms
$=(a)(a r)\left(a r^{2}\right) \ldots \ldots\left(a r^{n-1}\right)$
$=(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots . r^{n-1}\right)$
$ = {a^n}{r^{1 + 2 + .....(n - 1)}}$ ........$(2)$
Here, $1,2, \ldots \ldots(n-1)$ is an $A.P.$
$\therefore 1+2+\ldots \ldots \ldots+(n-1)$
$=\frac{n-1}{2}[2+(n-1-1) \times 1]=\frac{n-1}{2}[2+n-2]=\frac{n(n-1)}{2}$
$P=a^{n} r^{\frac{n(n-1)}{2}}$
$\therefore P^{2}=a^{2 n} r^{n(n-1)}$
$=\left[a^{2} r^{(n-1)}\right]^{n}$
$=\left[a \times a r^{n-1}\right]^{n}$
$=(a b)^{n}$ [ Using $(1)$ ]
Thus, the given result is proved.
If five $G.M.’s$ are inserted between $486$ and $2/3$ then fourth $G.M.$ will be
$x = 1 + a + {a^2} + ....\infty \,(a < 1)$ $y = 1 + b + {b^2}.......\infty \,(b < 1)$ Then the value of $1 + ab + {a^2}{b^2} + ..........\infty $ is
Find the $12^{\text {th }}$ term of a $G.P.$ whose $8^{\text {th }}$ term is $192$ and the common ratio is $2$
The solution of the equation $1 + a + {a^2} + {a^3} + ....... + {a^x}$ $ = (1 + a)(1 + {a^2})(1 + {a^4})$ is given by $x$ is equal to
If the product of three consecutive terms of $G.P.$ is $216$ and the sum of product of pair-wise is $156$, then the numbers will be