If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is

  • A

    $9{x^2} + 4{y^2} = 36$

  • B

    $4{x^2} + 9{y^2} = 36$

  • C

    $36{x^2} + 9{y^2} = 4$

  • D

    $9{x^2} + 36{y^2} = 4$

Similar Questions

The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is

Eccentricity of the ellipse $4{x^2} + {y^2} - 8x + 2y + 1 = 0$ is

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]

If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$