- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is
A
$9{x^2} + 4{y^2} = 36$
B
$4{x^2} + 9{y^2} = 36$
C
$36{x^2} + 9{y^2} = 4$
D
$9{x^2} + 36{y^2} = 4$
Solution
(b) $\because \,ae = \pm \sqrt 5 $
==> $a = \pm \sqrt 5 \left( {\frac{3}{{\sqrt 5 }}} \right) = \pm 3$
==> ${a^2} = 9$
${b^2} = {a^2}(1 – {e^2}) = 9\left( {1 – \frac{5}{9}} \right) = 4$
Hence, equation of ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$
==> $4{x^2} + 9{y^2} = 36$.
Standard 11
Mathematics