Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is

A

$9{x^2} + 4{y^2} = 36$

B

$4{x^2} + 9{y^2} = 36$

C

$36{x^2} + 9{y^2} = 4$

D

$9{x^2} + 36{y^2} = 4$

Solution

(b) $\because \,ae =  \pm \sqrt 5 $

==> $a = \pm \sqrt 5 \left( {\frac{3}{{\sqrt 5 }}} \right) = \pm 3$

==> ${a^2} = 9$

${b^2} = {a^2}(1 – {e^2}) = 9\left( {1 – \frac{5}{9}} \right) = 4$

Hence, equation of ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$

==> $4{x^2} + 9{y^2} = 36$.
 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.