1.Relation and Function
hard

यदि फलन $f:[1,\;\infty ) \to [1,\;\infty )$ निम्न प्रकार से परिभाषित है, $f(x) = {2^{x(x - 1)}},$ तो ${f^{ - 1}}(x) =$

A

${\left( {\frac{1}{2}} \right)^{x(x - 1)}}$

B

$\frac{1}{2}(1 + \sqrt {1 + 4{{\log }_2}x} )$

C

$\frac{1}{2}(1 - \sqrt {1 + 4{{\log }_2}x} )$

D

अपरिभाषित है

(IIT-1999)

Solution

(b) दिया है $f(x) = {2^{x(x – 1)}}\, $

$\Rightarrow \,\,x\,(x – 1) = {\log _2}f(x)$

$ \Rightarrow \,\,{x^2} – x – {\log _2}f(x) = 0\,\, $

$\Rightarrow \,\,x = \frac{{1 \pm \sqrt {1 + 4{{\log }_2}f(x)} }}{2}$

केवल $x = \frac{{1 + \sqrt {1 + 4{{\log }_2}f(x)} }}{2}$ ही प्रान्त (domain) में होगा।

$\therefore \,\,{f^{ – 1}}(x) = \frac{1}{2}\,[1 + \sqrt {1 + 4\,{{\log }_2}x} ]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.