1.Relation and Function
normal

If the function $f(x) = x^5 + e^{\frac {x}{5}}$ and $g(x) = f^{-1} (x)$ , then the value of $\frac{1}{{g'\left( {1 + {e^{1/5}}} \right)}}$ is

A

$5$

B

$5 + \frac{{{e^{1/5}}}}{5}$

C

$1$

D

$5 + \frac{5}{e}$

Solution

we have ${x^5} + {e^{x/5}} = 1 + {e^{1/5}}$

$\Rightarrow f(x)=5 x^{4}+\frac{1}{5} e^{x / 5}=5+\frac{1}{5} e^{1 / 5}$

$\Rightarrow \quad x=1, f(x)=5+\frac{1}{5} e^{1 / 5}$

use $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}$

$\Rightarrow g^{\prime}\left(1+e^{1 / 5}\right)=\frac{1}{f^{\prime}(1)}=\frac{1}{5+\frac{e^{1 / 5}}{5}}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.