Consider $f: R \rightarrow R$ given by $f(x)=4 x+3 .$ Show that $f$ is invertible. Find the inverse of $f$
$f : R \rightarrow R$ is given by, $f ( x )=4 x +3$
For one - one
Let $f(x)=f(y)$
$\Rightarrow 4 x+3=4 y+3$
$\Rightarrow 4 x=4 y$
$\Rightarrow x=y$
$\therefore f$ is a one - one function
For onto
For $y \in R,$ let $y=4 x+3$
$\Rightarrow x=\frac{y-3}{4} \in R$
Therefore, for any $y \in R ,$ there exists $x =\frac{y-3}{4} \in R ,$ such that
$f(x)=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y$
$\therefore f$ is onto.
Thus, $f$ is one $-$ one and onto and therefore, $f^{-1}$ exists.
Let us define $g:$ $R \rightarrow R$ by $g(x)=\frac{y-3}{4}$
Now,
$(gof)(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3)-3}{4}=\frac{4 x}{4}=x$
and
$(fog)(y)=f(g(y))=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y-3+3=y$
$\therefore $ $gof= fog = I _{ R }$
Hence, $f$ is invertible and the inverse of $f$ is given by $f^{-1}(y)=g(y)=\frac{y-3}{4}$
Which of the following function is inverse function
If $y = f(x) = \frac{{x + 2}}{{x - 1}}$, then $x = $
The inverse of $y=5^{\log x}$ is
Let the function $f$ be defined by $f(x) = \frac{{2x + 1}}{{1 - 3x}}$, then ${f^{ - 1}}(x)$ is
If $a * b=10$ ab on $Q^{+}$ then find the inverse of 0.01