The number of polynomials $p: R \rightarrow R$ satisfying $p(0)=0, p(x)>x^2$ for all $x \neq 0$ and $p^{\prime \prime}(0)=\frac{1}{2}$ is
$0$
$1$
more than $1,$ but finite
infinite
Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$, Rolle’s theorem is applicable to $ f $ for $x \in [0,1]$, if $\alpha = $
Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is
Examine the applicability of Mean Value Theorem:
$(i)$ $f(x)=[x]$ for $x \in[5,9]$
$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$
$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$
If the functions $f ( x )=\frac{ x ^3}{3}+2 bx +\frac{a x^2}{2}$ and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to
If the function $f(x) = a{x^3} + b{x^2} + 11x - 6$ satisfies the conditions of Rolle's theorem for the interval $[1, 3$] and $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, then the values of $a$ and $b$ are respectively