- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
If the inequality $kx^2 -2x + k \geq 0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is
A
$[-1,1]$
B
$\left( { - \infty ,1} \right]$
C
$\phi $
D
$\left( { - 1,\infty } \right]$
Solution
${\rm{k}} \ge \frac{{2{\rm{x}}}}{{\underbrace {{{\rm{x}}^2} + 1}_{\left[ { – 1,1} \right]}}}$
$\Rightarrow \mathrm{k} \geq-1$
Standard 11
Mathematics