If the inequality $kx^2 -2x + k \geq 0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is
$[-1,1]$
$\left( { - \infty ,1} \right]$
$\phi $
$\left( { - 1,\infty } \right]$
If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
If the equation $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ has atleast one solution, then $(b + a)$ can be equal to
If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval
In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is