4-2.Quadratic Equations and Inequations
normal

If the inequality $kx^2 -2x + k \geq  0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is

A

$[-1,1]$

B

$\left( { - \infty ,1} \right]$

C

$\phi $

D

$\left( { - 1,\infty } \right]$

Solution

${\rm{k}} \ge \frac{{2{\rm{x}}}}{{\underbrace {{{\rm{x}}^2} + 1}_{\left[ { – 1,1} \right]}}}$

$\Rightarrow \mathrm{k} \geq-1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.