If the inequality $kx^2 -2x + k \geq 0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is
$[-1,1]$
$\left( { - \infty ,1} \right]$
$\phi $
$\left( { - 1,\infty } \right]$
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.
$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
($1$) $a_{12}=$
$[A]$ $a_{11}-a_{10}$ $[B]$ $a_{11}+a_{10}$ $[C]$ $2 a_{11}+a_{10}$ $[D]$ $a_{11}+2 a_{10}$
($2$) If $a_4=28$, then $p+2 q=$
$[A] 21$ $[B] 14$ $[C] 7$ $[D] 12$
answer the quetion ($1$) and ($2$)
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is
One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is