The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be
$6, 4, -1$
$6, 4, 1$
$-6, 4, 1$
$-6, -4, 1$
If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$
If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
then $|c|$ is equal to
How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?