The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be
$6, 4, -1$
$6, 4, 1$
$-6, 4, 1$
$-6, -4, 1$
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ , and $\alpha < \beta $. Then $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is
Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes
Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)