Gujarati
4-2.Quadratic Equations and Inequations
normal

The roots of the equation ${x^4} - 2{x^3} + x = 380$ are

A

$5, - 4,\frac{{1 \pm 5\sqrt { - 3} }}{2}$

B

$ - 5,4, - \frac{{1 \pm 5\sqrt - 3}}{2}$

C

$5,4,\frac{{ - 1 \pm 5\sqrt - 3}}{2}$

D

$ - 5, - 4,\frac{{1 \pm 5\sqrt - 3}}{2}$

Solution

(a) Given equation is ${x^4} – 2{x^3} + x – 380 = 0$

Using remainder theorem we get

$(x – 5)\,(x + 4)({x^2} – x + 19) = 0$

$x – 5 = 0$, $x – 4 = 0$ and ${x^2} – x + 19 = 0$

$x = 5$, $x = – 4$ and $x = \frac{{ – 1 \pm 5\sqrt { – 3} }}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.