The roots of the equation ${x^4} - 2{x^3} + x = 380$ are

  • A

    $5, - 4,\frac{{1 \pm 5\sqrt { - 3} }}{2}$

  • B

    $ - 5,4, - \frac{{1 \pm 5\sqrt - 3}}{2}$

  • C

    $5,4,\frac{{ - 1 \pm 5\sqrt - 3}}{2}$

  • D

    $ - 5, - 4,\frac{{1 \pm 5\sqrt - 3}}{2}$

Similar Questions

If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -

If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are

The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

If $a, b, c, d$ are four distinct numbers chosen from the set $\{1,2,3, \ldots, 9\}$, then the minimum value of $\frac{a}{b}+\frac{c}{d}$ is

  • [KVPY 2017]