The roots of the equation ${x^4} - 2{x^3} + x = 380$ are
$5, - 4,\frac{{1 \pm 5\sqrt { - 3} }}{2}$
$ - 5,4, - \frac{{1 \pm 5\sqrt - 3}}{2}$
$5,4,\frac{{ - 1 \pm 5\sqrt - 3}}{2}$
$ - 5, - 4,\frac{{1 \pm 5\sqrt - 3}}{2}$
If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are
The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are
Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.
If $a, b, c, d$ are four distinct numbers chosen from the set $\{1,2,3, \ldots, 9\}$, then the minimum value of $\frac{a}{b}+\frac{c}{d}$ is