यदि दीर्घवृत्त का नाभिलम्ब उसकी लघु अक्ष के आधे के बराबर हो, तो उसकी उत्केन्द्रता है
$3/2$
$\sqrt 3 /2$
$2/3$
$\sqrt 2 /3$
माना $S =\left\{( x , y ) \in N \times N : 9( x -3)^2+16( y -4)^2 \leq 144\right\}$
तथा $T =\left\{( x , y ) \in R \times R :( x -7)^2+( y -4)^2 \leq 36\right\}$हैं। तो $n ( S \cap T )$ बराबर $............$ है।
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $26,$ नाभियाँ $(±5,0)$
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\cos \theta ,\;b\sin \theta )$ पर अभिलम्ब का समीकरण होगा
यदि दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की नाभियाँ व अतिपरवलय $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ की नाभियाँ सम्पाती हों तो ${b^2}$ का मान है
रेखा $y = mx + c$ दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ का अभिलम्ब है, यदि $c = $