यदि रेखा $x\cos \alpha + y\sin \alpha = p$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ पर अभिलम्ब है, तो
${p^2}({a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha ) = {a^2} - {b^2}$
${p^2}({a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha ) = {({a^2} - {b^2})^2}$
${p^2}({a^2}{\sec ^2}\alpha + {b^2}{\rm{cose}}{{\rm{c}}^2}\alpha ) = {a^2} - {b^2}$
${p^2}({a^2}{\sec ^2}\alpha + {b^2}{\rm{cose}}{{\rm{c}}^2}\alpha ) = {({a^2} - {b^2})^2}$
बिंदु $(-3,-5)$ को दीर्घवत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के बिंदुओं से मिलाने वाले रेखाखण्डों के मध्य-बिंदुओं का बिंदुपथ है
माना वक्र $9 x^2+16 y^2=144$ की एक स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर मिलती है। तो रेखाखंड $\mathrm{AB}$ की न्यूनतम लंबाई_______________.
यदि एक दीर्घवृत जिसका केंद्र मूलबिन्दु पर है, के दीर्घ अक्ष तथा लघु अक्ष की लंबाइयों का अंतर $10$ है तथा एक नाभिकेंद्र $(0,5 \sqrt{3})$ पर है, तो इसके नाभिलंब की लंबाई है
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
चित्र में दर्शाए अनुसार एक दीवार $(Wall)$, फर्श से $135^{\circ}$ कोण पर झुकी है, $\ell$ लम्बाई की एक सीढ़ी $(ladder)$ दीवार पर स्थित है. जैसे-जैसे सीड़ी फिसलती है उसका मध्य बिंदु एक दीर्घ वृत्त की चाप के अनुसार घूमती हैं. दीर्घ वृत्त का क्षेत्रफल क्या होगा ?