10-2. Parabola, Ellipse, Hyperbola
hard

If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36,$ then which one of the following is true?

A

$5 m =4$

B

$4 c^{2}=369$

C

$c^{2}=369$

D

$8 m+5=0$

(JEE MAIN-2020)

Solution

$y=m x+c$ is tangent to

$\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and $x^{2}+y^{2}=36$

$c^{2}=100 m^{2}-64 l c^{2}=36\left(1+m^{2}\right)$

$\Rightarrow 100 m ^{2}-64=36+36 m ^{2}$

$m ^{2}=\frac{100}{64} \Rightarrow m =\pm \frac{10}{8}$

$c^{2}=36\left(1+\frac{100}{64}\right)=\frac{36 \times 164}{64}$

$4 c^{2}=369$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.