यदि रेखा $y = mx + c$ दीर्घवृत्त  $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$ को स्पर्श करती है, तो $c = $

  • A

    $ \pm \sqrt {{b^2}{m^2} + {a^2}} $

  • B

    $ \pm \sqrt {{a^2}{m^2} + {b^2}} $

  • C

    $ \pm \sqrt {{b^2}{m^2} - {a^2}} $

  • D

    $ \pm \sqrt {{a^2}{m^2} - {b^2}} $

Similar Questions

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$36 x^{2}+4 y^{2}=144$

बिंदु $(-3,-5)$ को दीर्घवत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के बिंदुओं से मिलाने वाले रेखाखण्डों के मध्य-बिंदुओं का बिंदुपथ है

  • [JEE MAIN 2021]

उस दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ और शीर्ष $(4, 0)$ तथा $(10, 0)$ हैं, होगा   

दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है  

यदि दो बिन्दुओं $A$ तथा $B$ के निर्देशांक क्रमशः $(\sqrt{7}, 0)$ तथा $(-\sqrt{7}, 0)$ हैं और शांकव (conic) $9 x ^{2}+16 y ^{2}$ $=144$ पर कोई बिन्दु $P$ है, तो $PA + PB$ बराबर है

  • [JEE MAIN 2020]