If the line $x\, cos \theta + y\, sin \theta = 2$ is the equation of a transverse common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6 \sqrt{3} \,x - 6y + 20 = 0$, then the value of $\theta$ is :

  • A

    $5\pi /6$

  • B

    $2\pi /3$

  • C

    $\pi /3$

  • D

    $\pi /6$

Similar Questions

A circle $C$ of radius $2$ lies in the second quadrant and touches both the coordinate axes. Let $r$ be the radius of a circle that has centre at the point $(2,5)$ and intersects the circle $C$ at exactly two points. If the set of all possible values of $r$ is the interval $(\alpha, \beta)$, then $3 \beta-2 \alpha$ is equal to :

  • [JEE MAIN 2025]

The centre of the circle passing through $(0, 0)$ and $(1, 0)$ and touching the circle ${x^2} + {y^2} = 9$ is

  • [AIEEE 2002]

Suppose we have two circles of radius 2 each in the plane such that the distance between their centers is $2 \sqrt{3}$. The area of the region common to both circles lies between

  • [KVPY 2017]

The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is

The equation of the circle which passes through the origin, has its centre on the line $x + y = 4$ and cuts the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$ orthogonally, is