The equation of the circle which passes through the intersection of ${x^2} + {y^2} + 13x - 3y = 0$and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and whose centre lies on $13x + 30y = 0$ is
${x^2} + {y^2} + 30x - 13y - 25 = 0$
$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$
$2{x^2} + 2{y^2} + 30x - 13y - 25 = 0$
${x^2} + {y^2} + 30x - 13y + 25 = 0$
A circle $\mathrm{C}$ touches the line $\mathrm{x}=2 \mathrm{y}$ at the point $(2,1)$ and intersects the circle $C_{1}: x^{2}+y^{2}+2 y-5=0$ at two points $\mathrm{P}$ and $\mathrm{Q}$ such that $\mathrm{PQ}$ is a diameter of $\mathrm{C}_{1}$. Then the diameter of $\mathrm{C}$ is :
The equation of the circle having its centre on the line $x + 2y - 3 = 0$ and passing through the points of intersection of the circles ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and ${x^2} + {y^2} - 4x - 2y + 4 = 0$, is
For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true
Let $C_1$ be the circle of radius $1$ with center at the origin. Let $C_2$ be the circle of radius $\mathrm{I}$ with center at the point $A=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is
If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of $\lambda$ is