- Home
- Standard 11
- Mathematics
If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to
$\frac{4}{5}$
$\frac{77}{12}$
$\frac{5}{4}$
$\frac{105}{4}$
Solution
$\bar{X}=\frac{24}{5} ; \sigma^2=\frac{194}{25}$
Let first four observation be $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$
Here, $\frac{x_1+x_2+x_3+x_4+x_5}{5}=\frac{24}{5}$.
Also, $\frac{\mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4}{4}=\frac{7}{2}$
$\Rightarrow \mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4=14$
Now from eqn $-1$
$\mathrm{x}_5$=$10$
Now, $\sigma^2=\frac{194}{25}$
$ \frac{\mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2+\mathrm{x}_5^2}{5}-\frac{576}{25}=\frac{194}{25} $
$ \Rightarrow \mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2=54$
Now, variance of first $4$ observations
Var $=\frac{\sum_{i=1}^4 x_i^2}{4}-\left(\frac{\sum_{i=1}^4 x_i}{4}\right)^2$
$ =\frac{54}{4}-\frac{49}{4}=\frac{5}{4}$
Similar Questions
Find the mean and variance for the following frequency distribution.
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
$f_i$ | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
From the data given below state which group is more variable, $A$ or $B$ ?
Marks | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
Group $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
Group $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |