यदि पाँच प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{24}{5}$ तथा $\frac{194}{25}$ हैं तथा प्रथम चार प्रेक्षणों का माध्य $\frac{7}{2}$, है, तो प्रथम चार प्रेक्षणों का प्रसरण बराबर है

  • [JEE MAIN 2024]
  • A

     $\frac{4}{5}$

  • B

     $\frac{77}{12}$

  • C

     $\frac{5}{4}$

  • D

     $\frac{105}{4}$

Similar Questions

यदि संख्याओं $-1,0,1, k$ का मानक विचलन $\sqrt{5}$ है, जहाँ $k > 0$ है, तो $k$ बराबर है

  • [JEE MAIN 2019]

माना $n$ प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ है तथा उनका समान्तर माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ है।

कथन $1:\, 2 x_{1} , 2 x_{2}, \ldots , 2 x_{n}$ का प्रसरण $4 \sigma^{2}$ है।

कथन $2:\, 2 x_{1} , 2 x_{2} \ldots . . , 2 x_{n}$ का समान्तर माध्य $4 \bar{x}$ है।

  • [AIEEE 2012]

माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है

  • [JEE MAIN 2021]

माना आंकडो

$X$ $1$ $3$ $5$ $7$ $9$
$(f)$ $4$ $24$ $28$ $\alpha$ $8$

का माध्य 5 है। यदि इन आंकडों के माध्य के सापेक्ष माध्य विचलन तथा प्रसरण क्रमशः $m$ तथा $\sigma^2$ हैं, तो $\frac{3 \alpha}{m+\sigma^2}$ बराबर है________

  • [JEE MAIN 2023]

$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं