- Home
- Standard 11
- Mathematics
જો પાંચ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ હોય તથા પ્રથમ ચાર અવલોકનોનું મધ્યક $\frac{7}{2}$ હોય, તો પ્રથમ ચાર અવલોકનોનું વિચરણ......................થાય.
$\frac{4}{5}$
$\frac{77}{12}$
$\frac{5}{4}$
$\frac{105}{4}$
Solution
$\bar{X}=\frac{24}{5} ; \sigma^2=\frac{194}{25}$
Let first four observation be $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$
Here, $\frac{x_1+x_2+x_3+x_4+x_5}{5}=\frac{24}{5}$.
Also, $\frac{\mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4}{4}=\frac{7}{2}$
$\Rightarrow \mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4=14$
Now from eqn $-1$
$\mathrm{x}_5$=$10$
Now, $\sigma^2=\frac{194}{25}$
$ \frac{\mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2+\mathrm{x}_5^2}{5}-\frac{576}{25}=\frac{194}{25} $
$ \Rightarrow \mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2=54$
Now, variance of first $4$ observations
Var $=\frac{\sum_{i=1}^4 x_i^2}{4}-\left(\frac{\sum_{i=1}^4 x_i}{4}\right)^2$
$ =\frac{54}{4}-\frac{49}{4}=\frac{5}{4}$